Интернет. Железо. Программы. Обзоры. Операционные системы
Поиск по сайту

Сканирующие оптико - электронные съёмочные системы (сканеры). Оптико-электронный тип съемки Оптико электронный способ сканирования

Сканирующие системы появились в сере­дине 70-х годов и к концу 80-х почти полностью вытеснили традицион­ные фотографические и телевизионные системы. Сегодня они являются основными поставщиками данных ДЗЗ при решении задач природно-­ресурсного и экологического мониторинга.

В общих чертах механизм сканирования заключается в следующем. На спутнике имеется сканер, который оснащён фотоэлектрическим или термоэлектрическим приёмником. В этот приёмник попадает отражённое излучение с некоторого участка земной поверхности. Приёмник генерирует электрический сигнал, завися­щий от интенсивности излучения. Величина сигнала фиксируется в памяти устройства, а датчик начинает принимать сигнал со следующего участка земной поверхности. Таким образом, участок за участком, начинает формироваться изображение. Каждый такой участок земной поверхности, отражение от которого было одномоментно зарегистрировано датчиком, на снимке отображается в виде пиксела – наименьшего неделимого элемента изображения. На каждом пикселе отражается осреднённое значение яркости всех объектов, попавших в пределы данного пиксела. Таким образом, чем меньше размер пиксела, тем качественнее изображение можно получить на снимке, так как становится возможным отображение более мелких объектов.

Сканерные системы дистанционного зондирования бывают двух видов – оптико-механические (делятся на линейные и поперечные) и оптико-электронные (продольные и планарные).

В линейных сканерах (для съёмки всей сцены используется один-единственный детекторный элемент

Рисунок 1 – Линейный оптико-механический сканер

В сканерах этого типа установлено зеркало, которое качается из стороны в сторону поперёк направления движения спутника. На зеркало последовательно попадает отраженное излучение от разных участков поверхности вдоль строки, а с зеркала оно уже попадает на детектор. Дойдя до крайней точки строки зеркало начинает вращаться в обратную сторону, считывая следующую строку (спутник за это время пролетел расстояние, соответствующее одной строке пикселов). Таким образом, строка за строкой изображение наращивается. Колебание зеркала поперек маршрута съемки реализует строки изображения, а благодаря движению носителя происходит накопление строк и формируется полное изображение снимка, имеющее строчно-сетчатую поэлементную структуру.

Другой разновидностью линейных сканеров является сканер, в котором зеркало не качается из стороны в сторону, а вращается всегда в одном направлении вокруг своей оси, в диапазоне 360 градусов. Здесь датчик считывает сигнал вдоль строки, а затем, пока датчик делает вокруг своей оси, спутник продвигается на некоторое расстояние вперёд и датчик вновь начинает считывать следующую строку в том же направлении. За одну секунду осуществляется около 7 таких циклов.



В поперечных ПЗС-сканерах , например, сканер TM (Thematic Mapper) спутника Landsat-5, используется линейка детекторов, расположенных вдоль маршрута съёмки. Такая линейка называется линейка ПЗС (прибор с зарядовой связью; название отражает способ считывания электрического потенциала методом сдвига заряда от элемента к элементу). В результате, при каждом цикле движения зеркала все детекторные элементы осуществляют параллельное сканирование земной поверхности. Как и для линейных сканеров, движение датчика может осуществляться из стороны в сторону, когда следующая строка считывается в противоположном направлении, либо вокруг своей оси.

Основным недостатком устройств такого типа является наличие механического сканирующего зеркала, ограничивающего точность географической привязки получаемых изображений и снижающего долговечность и надежность устройства в целом. В оптико-электронных камерах на приборах с зарядовой связью (ПЗС), получивших наименование «push-broom scanner», элементы с механическим сканированием не используются. Строка изображения в одном спектральном диапазоне формируется при помощи линейной матрицы (линейки) детекторов на ПЗС, ориентированной перпендикулярно направлению полета спутника.

Продольные ПЗС-сканеры оснащены ПЗС-линейкой, состоящей из тысяч детекторных элементов, расположенных поперёк маршрута. В результате параллельное сканирование всего набора данных происходит просто за счёт движения платформы по орбите.



Планарный ПЗС представляет собой матрицу датчиков, аналогично матрице в обычном цифровом фотоаппарате. Необ­ходимо обеспечить достаточное время, чтобы определенное количество фотонов попало на датчик. Если датчик находится в движении относи­тельно цели, то применяется пошаговое формирование изображения, чтобы предотвратить размывание.

Независимо от типа сканирующей системы полный угол сканирования поперек маршрута съемки называется углом обзора , а соответствующая величина на поверхности Земли шириной полосы съемки (другое название - ширина полосы охвата ). Расстояние на земной поверхности, соответствующее расстоянию между центрами соседних пикселов, называется наземным интервалом дискретизации (другое название – наземный шаг сканирования ). Наземные интервалы дискретизации вдоль и поперек маршрута съемки определяются соответствующими частотами дискретизации, а также скоростью движения платформы. На практике частоту дискретизации обычно подбирают так, чтобы величина наземного интервала дискретизации была равна размеру мгновенного поля обзора, то есть ширине проекции одного детекторного элемента на земную поверхность (рис. 2 и 3). Таким образом, мгновенные поля обзора соседних пикселов примыкают друг к другу как в продольном, так и в поперечном направлении. Наземный интервал дискретизации вдоль маршрута съемки определяется скоростью платформы и либо частотой дискретизации (для продольных ПЗС-сканеров), либо скоростью сканирования (для линейных и поперечных ПЗС-сканеров), которые подбираются так, чтобы соответствовать мгновенному полю обзора в надире. Использование в некоторых системах более высокой частоты поперечной дискретизации приводит к наложению мгновенных полей обзора и, как следствие, к некоторому улучшению качества данных. Такой метод «избыточного сканирования» применяется, в частности, в съемочных системах Landsat MSS и AVHRR KLM.


Рисунок 2 – Простейшая геометрическая схема расположения детекторного элемента в фокальной плоскости датчика

Рисунок 3 – Связь между проекцией мгновенного поля обзора и интервалом дискретизации для типовых сканеров и для приборов MSS и AVHRR

Наземный интервал дискретизации GSI определяется высотой расположения платформы Н, фокусным расстоянием f и междетекторным интервалом (или, как было отмечено выше, пространственной частотой дискретизации). Если частота дискретизации равна одному пикселу на один междетекторный интервал, наземный интервал в надире , то есть непосредственно под датчиком, задаётся простой формулой:

Где m = f/H – коэффициент геометрического увеличения, а величина междетекторного интервала обычно равна ширине детекторного элемента w .

Мгновенное поле обзора GIFOV зависит от величин H, f и w аналогичным образом. При этом следует заметить, что инженеры-разработчики систем дистанционного зондирования предпочитают использовать в своих расчётах другой параметр – величину мгновенного угла обзора IFOV, равную углу, который образует детекторный элемент с осью оптической системы (рисунок 2). Это обусловлено тем, что IFOV является величиной постоянной и не зависит от рабочей высоты датчика.

Данные, получаемые при помощи оптических датчиков с высоким пространственным разрешением, используются при решении большого числа тематических задач, включая, например, измерение протяженности и классификация растительного покрова, определение состояния сельскохозяйственных культур, геологическое картирование, контроль эрозии почв в береговой зоне и т.д. Однако область применимости этих данных несколько ограничивается тем, что получение качественных оптических снимков возможно только на освещенной части поверхности Земли в ясную, безоблачную погоду.

Система координат оптико-механического сканера.

Изображение строки в оптико-механическом сканере формируется за счет вращения зеркала, а строки – за счет перемещения носителя съемочной системы. Таким образом, каждый пиксель изображения имеет свои элементы внешнего ориентирования.

Ө – угол поля зрения сканера.

Началом системы координат сканера является точка S – точка пересечения оси вращения зеркала и главной оптической оси объектива. Ось x z совпадает с биссектрисой угла поля зрения съемочной системы. Ось y дополняет систему до правой.


Система координат сканерного изображения задается также как и для оптико-электронного сканера, т.е. ось y с совпадает c одной из строк изображения, начало системы координат о находится в середине строки, а ось x с – дополняет систему до правой.

По измеренным координатам точки изображенияx с y с можно получить время формирования изображения данного пикселя, а следовательно и элементы внешнего ориентирования сканера в этот момент.

Направление на точку местности М (рис.10) в системе координат сканера определяет единичный вектор r m , координаты которого можно определить следующим образом:

(18)

- размер кадра в пикселях вдоль оси y .

Определение координат точек местности по изображениям, полученным с помощью оптико-механического сканера выполняется аналогично тому, как это делалось для изображений, полученных оптико-электронным сканером.

Принцип действия лазерно-локационных съемочных систем

Лазерно-локационная съемочная система по принципу действия напоминает оптико-механический сканер, только вместо диафрагмы имеется лазер, с помощью которого сканируется (облучается) поверхность земли (рис.11). Таким образом, эта съемочная система относится к активным системам. Лазерный луч с определенной частотой посылается в сторону поверхности земли, который возвращается в съемочную систему и фиксируется в приемнике излучения в виде интенсивности отраженного сигнала. Кроме того, фиксируется время прохождения лазерного луча от лазера до поверхности земли и обратно до приемника излучений, что позволяет определить расстояние D до данной точки земли. Фиксируя угол поворота зеркала φ можно определить координаты точки поверхности земли в системе координат сканера Sxyz , а зная элементы внешнего ориентирования сканера в этот момент, можно вычислить координаты этой точки в системе координат объекта OXYZ . Таким образом, результатом работы лазерного сканера является трехмерная модель снимаемого объекта в виде облака точек с известными координатами XYZ и интенсивностью отраженного сигнала.

Система координат лазерного сканера задается следующим образом (рис.11). Начало системы S совпадает с точкой пересечения оси вращения зеркала и оптической осью системы. Ось x совпадает с осью вращения зеркала. Ось z проходит через центр проекции S и совпадает с биссектрисой угла поля зрения сканера Ө . Ось у дополняет систему до правой. Положительное направление оси x совпадает с направлением полета.

Координаты вектора SM в системе координат сканера определяют как:

(19)

Если известны элементы внешнего ориентирования , лазерного сканера в момент измерения наклонного расстояния D , то координаты точки М в системе координат объекта можно определить по известным формулам:

(20)

Элементы внешнего ориентирования , лазерного сканера во время съемки определяются с помощью навигационного комплекса в составе дифференциальной GPS- системы и инерциальной системы.

Принцип формирования радиолокационных изображений.

Системы координат.

На рис.12 показан принцип радиолокационной съемки. Короткий импульс от передатчика, расположенного на носителе (самолете или спутнике), излучается в вертикальной плоскости с помощью направленной антенны. При достижении поверхности земли волна отражается. Часть отраженной энергии возвращается к приемнику, установленному на том же месте, что и передатчик. Принятая энергия квантуется. В результате получаются сигналы, пропорциональные принятой в данный момент энергии, зависящей от отражающей способности определенного участка местности. Одновременно измеряются наклонные дальности от передатчика до каждого из элементарных участков местности. Эти элементарные участки местности определяют разрешение съемочной системы. Таким образом, плотность пикселя радиолокационного изображения зависит от интенсивности отраженного радиосигнала от соответствующей точки объекта, а положение пикселя вдоль строки пропорционально наклонной дальности до данной точки. Строки изображения формируются за счет движения носителя.

Если расстояния до точек объекта равны между собой (D 1 и D 2 на рис. 13), то эти разные точки объекта изобразятся в одной точке на снимке. Диапазон измеряемых расстояний и соответственно полоса обзора определяются параметрами съемочной системы и лежат в пределах D o и D к начальной и конечной измеряемых дальностей.

Чтобы увеличить захват местности (полосу обзора), нужно увеличить время от начала посыла импульса до их приема.

Система координат радиолокационного изображения задается следующим образом. Ось y c совпадает с одной из строк изображения. Начало системы координат о совпадает с точкой соответствующей начальной дальности D o , которая фиксируется в момент съемки. Ось x c дополняет систему до правой.

Таким образом, измерив координатуy c любой точки изображения можно узнать наклонную дальность до этой точки.

где k – масштабный коэффициент, который определяется в результате калибровки системы.

Система координат самой радиолокационной системы задается следующим образом (рис.15).

Начало системы координат совпадает с точкой излучения радиоимпульса. Оси y,z лежат в плоскости излучения импульсов. Ось x дополняет систему до правой.

Плоскость излучения радиоимпульсов может быть произвольно ориентирована в пространстве

Матрица является важнейшей частью любого сканера. Матрица трансформирует изменения цвета и яркости принимаемого светового потока в аналоговые электрические сигналы, которые будут понятны лишь единственному ее электронному другу – аналого-цифровому преобразователю (АЦП). С этой точки зрения, АЦП можно сравнить с гидом-переводчиком, неизменным ее компаньоном. Только он как никто другой понимает матрицу, ведь никакие процессоры или контроллеры не разберут ее аналоговые сигналы без предварительного толкования преобразователем. Только он способен обеспечить работой всех своих цифровых коллег, воспринимающих лишь один язык – язык нулей и единиц.

Световой поток, падая на поверхность матрицы, буквально "вышибает" электроны из ее чувствительных ячеек. И чем ярче свет, тем больше электронов окажется в накопителях матрицы, тем больше будет их сила, когда они непрерывным потоком ринутся к выходу. Однако сила тока электронов настолько несоизмеримо мала, что вряд ли их "услышит" даже самый чувствительный АЦП.

Именно поэтому на выходе из матрицы их ждет усилитель, который сравним с огромным рупором, превращающим, образно говоря, даже комариный писк в вой громогласной сирены. Усиленный сигнал (пока еще аналоговый) "взвесит" преобразователь, и присвоит каждому электрону цифровое значение, согласно его силе тока.

Большинство современных сканеров для дома и офиса базируются на матрицах двух типов: на CCD (Charge Coupled Device) или на CIS (Contact Image Sensor). Корпус CIS-сканера плоский, в сравнении с аналогичным CCD-аппаратом (его высота обычно составляет порядка 40-50 мм).

CCD-сканер обладает большей глубиной резкости, нежели его CIS-собрат. Достигается это за счет применения в его конструкции объектива и системы зеркал.

На рисунке, для простоты восприятия, нарисовано лишь одно зеркало, тогда как у типового сканера их не менее трех-четырех

Сканеры с CCD-матрицей распространены гораздо больше, чем CIS-аппараты. Объяснить это можно тем, что сканеры в большинстве случаев приобретаются не только для оцифровки листовых текстовых документов, но и для сканирования фотографий и цветных изображений. Погрешность разброса уровней цветовых оттенков, различаемых стандартными CCD-сканерами составляет порядка ±20%, тогда как у CIS-аппаратов эта погрешность составляет уже ±40%.

CIS-матрица состоит из светодиодной линейки, которая освещает поверхность сканируемого оригинала, самофокусирующихся микролинз и непосредственно самих сенсоров. Конструкция матрицы очень компактна, таким образом, сканер, в котором используется контактный сенсор, всегда будет намного тоньше своего CCD-собрата. К тому же, такие аппараты славятся низким энергопотреблением; они практически нечувствительны к механическим воздействиям. Однако CIS-сканеры несколько ограничены в применении: аппараты, как правило, не приспособлены к работе со слайд-модулями и автоподатчиками документов.

Из-за особенностей технологии CIS-матрица обладает сравнительно небольшой глубиной резкости. Для сравнения, у CCD-сканеров глубина резкости составляет ±30 мм, у CIS – ±3 мм. Другими словами, положив на планшет такого сканера толстую книгу, получишь скан с размытой полосой посередине, т.е. в том месте, где оригинал не соприкасается со стеклом.

У CCD-аппарата вся картина будет резкой, поскольку в его конструкции есть система зеркал и фокусирующая линза. В свою очередь, именно достаточно громоздкая оптическая система и не позволяет CCD-сканеру достичь столь же компактных размеров, как у CIS-собрата.

В плане разрешающей способности CIS-сканеры также не конкурент CCD. Уже сейчас некоторые модели CCD-сканеров для дома и офиса обладают оптическим разрешением порядка 3200 dpi, тогда как у CIS-аппаратов оптическое разрешение ограничено пока что 1200 dpi.

Сканеры с CIS-матрицей нашли свое применение там, где требуется оцифровывать не книги, а листовые оригиналы. Тот факт, что эти сканеры целиком получают питание по шине USB и не нуждаются в дополнительном источнике питания, пришелся как нельзя кстати владельцам портативных компьютеров.

CCD-матрица представляется "большой микросхемой" со стеклянным окошком. Именно сюда и фокусируется отраженный от оригинала свет. Матрица не прекращает работать все то время, пока лафет со сканирующей кареткой, приводимый шаговым электродвигателем, совершает путь от начала планшета, до его конца. Замечу, что общая дистанция движения лафета по направлению "Y" называется частотой сэмплирования или механическим разрешением сканера (об этом мы поговорим чуть позже). За один шаг матрица целиком захватывает горизонтальную линию планшета, которая называется линией растра. По истечении времени, достаточного для обработки одной такой линии, лафет сканирующего блока перемещается на небольшой шаг, и наступает очередь для сканирования следующей линии, и т.д.

Самый важный элемент сканера – CCD-матрица

Вид сбоку на CCD-матрицу

На виде сбоку можно заметить два обычных винта, которые выполняют "деликатную" роль". С их помощью на этапе сборки сканера производилась точная юстировка матрицы (обратите также внимание на П-образные прорези в печатной плате на виде сверху), чтобы падающий на нее отраженный свет от зеркал ложился бы равномерно по всей ее поверхности. Кстати, в случае перекоса одного из элементов оптической системы воссозданное компьютером изображение окажется "полосатым".

На увеличенной фотографии CCD-матрицы достаточно хорошо видно, что CCD-матрица оснащена собственным RGB-фильтром. Именно он и представляет собой главный элемент системы разделения цветов, о чем многие говорят, но мало кто представляет, как на самом деле это работает. Обычно, многие обозреватели ограничиваются стандартной формулировкой: "стандартный планшетный сканер использует источник света, систему разделения цветов и прибор с зарядовой связью (CCD) для сбора оптической информации о сканируемом объекте". На самом деле, свет можно разделить на его цветовые составляющие, а затем сфокусировать на фильтрах матрицы. Столь же немаловажным элементом системы разделения цветов является объектив сканера.

Корпус

Корпус сканера должен обладать достаточной жесткостью, чтобы исключить возможные перекосы конструкции. Безусловно, лучше всего, если основа сканера представляет собой металлическое шасси. Однако корпуса большинства выпускаемых сегодня сканеров для дома и офиса, в целях снижения стоимости, полностью сделаны из пластмассы. В этом случае, необходимую прочность конструкции придают ребра жесткости, которые можно сравнить с нервюрами и лонжеронами самолета.

Оптическая система сканера не терпит пыли, поэтому корпус аппарата должен быть герметичным, без каких-либо щелей (даже технологических).

Края планшета должны иметь пологий спуск – это облегчает задачу по быстрому извлечению оригинала со стекла. Кроме того, между стеклом и планшетом не должно быть никакого зазора, который препятствовал бы извлечению оригинала.

Блок управления

Все сканеры управляются с персонального компьютера, к которому они подключены, а необходимые настройки перед сканированием задаются в пользовательском окне управляющей программы. По этой причине, сканерам для дома и офиса совсем не обязательно иметь собственный блок управления. Однако многие производители идут навстречу самым неподготовленным пользователям, и устанавливают (обычно на лицевую панель) несколько кнопок "быстрого сканирования".

Кнопки быстрого сканирования – элемент, без
которого можно обойтись

Не уступающего по своей эффективности серьёзным промышленным аналогам. Теперь перейдём к самой схеме прибора, основа которой выполнена на микроконтроллере AT89C52.

Пояснения к схеме:

  • - JP1 - DMX.
  • - JP2 - переключатель DMX/под музыку.
  • - JP3 - микрофон (с соблюдением полярности).
  • - JP4 - переменный резистор 50-100 кОм, регулятор чувствительности микрофона.
  • - JP5 - питание. Я использовал ~10 В, чтобы на движки шло +14 В
  • - JP6, JP7 - подключение оптических датчиков нулевого положения кругов гобо и цвета. В кругах делается прорезь, по которой и останавливается круг.

JP8 - управление приводом стробо. У меня этот выход идет на транзистор, который через оптопару и симистор управляет гашением лампы. То есть сигнала нет - лампа не горит, сигнал есть - лампа горит). Вот схема управления:

Симистор управляет электронным блоком питания. Он был на 12 В 200 Вт.

Переделал его на 15 В и применил лампу с отражателем от медицинских приборов 15 В 150 Вт. Последовательно с лампой стоит термистор (NTC1), чтобы лампа плавно загоралась и не сгорела. В режиме от музыки этот узел не работает и лампа постоянно включена. Эта плата закреплена на кусочке текстолита и прикручена прямо под лампой:

  • - JP9 - управление оптической призмой. Ставится движок, который при сигнале на этом выходе крутится и вращает оптическую призму, которая раздваивает или расстраивает изображение).
  • - JP10 - JP11 - подключение шаговых двигателей - 2 управление зеркалом, круг гобо и круг цвета.
  • - JP12, JP13 - разъем для внутрисхемного программирования.

Прошивку для МК и исходники можно . Другие файлы - на форуме. Фотографии платы светового сканера на микроконтроллере AT89C52:

Круги гобо и цвета останавливаются по оптическому датчику. Круг крутится в прорези оптодатчика. когда через оптодатчик проходит прорезь в круге, то он останавливается. Двигатели положения зеркала после включения отклоняют его в крайнее положение, бьются об упор и останавливаются. Потом поворачиваются на определенный угол в противоположное направление - это и есть среднее положение зеркала.

Круг гобо купил без дихроичных фильтров. Однако применить готовые не смог, так как угол поворота не сходился. Поэтому сделал из тонкого алюминия круги под мой диаметр и мой угол поворота. Просверлил отверстия нужного диаметра (чуть больше, чем купленные гобо).

Фотограмметрия – (photos-свет, gramma-запись, metreo-измерения) научная дисциплина, связанная с определением геометрических параметров (формы размеры пространственного положения и других св-в объектов по их изображению)

Дистанционное зондирование – получение информации об объекте по данным измерений сделанных на расстоянии от объекта, т.е без прямого контакта с ним.

Достоинство данных дистанционного зондирования:

    Цифровой вид информации

    Объективность и достоверность

    Обзорность

    Оперативность

    Регулярность и периодичность поступления информации

    Разнообразие по разрешению и видам съемки

    Возможность исследования медленно протекающих и скоротечных процессов

Недостатки данных дистанционного зондирования:

    Наличие геометрических, радиометрических и прочих искажений

    Перенасыщенность информации

    Наличие белых пятен

Методы ДЗ:

    Пассивный

Съемочная система фиксирует либо отраженную объектом солнечную энергию, либо собственное излучение объекта

    Активный

Съемочная система испускает сигнал собственного источника энергии, а затем фиксирует его отраженную объектом часть

Съемочные системы

Классификация съемочных систем:

В зависимости от приемника различают:

    Фотографическое изображение

Изображение формируется оптическим способом на фотопленке, а видимое изображение получается после фотохимической обработки (проявка и печать)

    Цифровое изображение

Приемником излучения яв-ся матрицы или линейки ПЗС (приборы с зарядовой связью)

По методу получения изображения:

    Пассивные

    1. Фотографические

      Оптико – механические сканерные системы

      Оптико – электронные сканерные системы

    Активные

    1. Радиолокационные съемочные системы

      Лазерные сканерные съемочные системы

Фотографические съемочные системы

В фотографической СС снимок формируется практически мгновенно, по законам центральной проекции.

Классификация фотоапапаратов:

    Одно-объективные

    Много-объективные

    Панорамные

По величине угла зрения:

    Узкоугольные (τ < 50°)

    Нормальны (50° < τ < 90°)

    Широкоугольные (90° < τ < 110°)

    Сверх широкоугольные (τ > 110°)

По величине фоккусного расстояния:

    Коротко-фокусные (f < 100 мм)

    Нормальные (100 мм < f < 300мм)

    Длиннофокусные (f > 300 мм)

Оптико – механические сканерные системы

Оптико – механические сканер – содержит только 1 технический элемент (датчик), который позволяет измерять яркость небольшого участка (пикселя) земной поверхности

Вращающееся зеркало просматривает полосу местности, что позволяет зарегистрировать яркость целого ряда пикселей земной поверхности за короткий промежуток времени, т.е сформировать строку изображения.

Следующая строка изображения формируется за счет движения носителя.

Если единственный датчик заменить линейкой, можно получить многоканальное изображение.

Тепловую составляющую излучения можно получить при помощи полу прозрачного зеркала.


Оптико – электронные сканерные системы

Изображение построенное при помощи оптико – электронных сканеров проектируется на линейное, либо матричное множество ПЗС.

Радио локационные сканерные системы

Взаимный импульс от передатчика установленного на носителе излучается направленной антенной формирующий веерообразный луч в вертикальной плоскости.

Часть отраженной энергии регистрируется приемником, установленном там же, где и передатчик. В результате образуются сигналы, которые управляют яркостью светового пятна электронно-лучевой трубки. Совокупность таких пятен образует строку радио-локационного изображения, а время прохождение сигнала определяет расстояние до объекта.

Диапазоны длин волны:

    Х полоса (𝜆=2,4 – 3,8 см)

    С полоса (𝜆=3,8 – 7,5 см)

    L полоса (𝜆=15 – 30 см)

Лазерные съемочные системы

Лазер – усиление света по средством вынужденного излучения, т.е это устройство преобразующее энергию накачки в энергию монохроматического и узко направленного потока излучений.

Одиночные снимки

Е – предметная плоскость (плоскость местности) - Горизонтальная плоскость, проходящая через какую-либо точку местности

S – точка фотографирования (центр проекции)

n – Плоскость наилучшего изображения

So - главный луч

f фокусное расстояние – расстояние от S до o′

p – плоскости снимка

o – главная тоска снимка

a , b – малое изображение точек A и B

O – Точка на местности соответствующая главной точке

Связка лучей – совокупность всех проектирующих лучей

Главный луч - Луч совпадающий с оптической осью камеры

Н ф – высота фотографирования – расстояния от точки фотографирования S до предметной плоскости Е.

основная формула определения масштаба

n точка надира – точка пересечения отвесной линии проведенной через точку фотографирования и отвесной линией

N – точка на местности соответствующая точке надира

α° - суммарный угол наклона снимка

с – точка нулевых искажений – точка пересечения биссектрисы угла наклона снимка и плоскости снимка

С – точка на местности соответствующая точке нулевых искажений

Tt линия основания – линия пересечения плоскости Е и плоскости p

Q плоскость главного вертикала –вертикальная плоскость проходящая через главный луч

Vv главная вертикаль – линия пересечения плоскости главного вертикала и плоскости снимка

VV линия направления съемки – линия пересечения предметной плоскости и плоскости главного вертикала (Q и Е)

Е′ - плоскость действительного горизонта - горизонтальная плоскость, проведенная через точку фотографирования

ii линия действительного горизонта – линия пересечения плоскости действительного горизонта и плоскости p.

I главная точка схода – точка пересечения действительного горизонта и главной вертикали VV

qq главная горизонталь – прямая в плоскости снимка проведенная через главную точку перпендикулярная главной вертикали

h c h c линия нулевых искажений – прямая в плоскости снимка проходящая через точку нулевых искажений параллельно главной горизонтали qq.